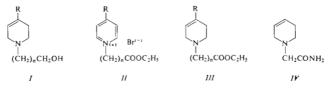
SYNTHESES OF SOME ω -(1,2,3,6-TETRAHYDRO-1-PYRIDYL)--1-ALKANOLS*

Alexandra ŠILHÁNKOVÁ, JIŘÍ LÁVIČKA, Stanislav KAFKA and Miloslav Ferles


Department of Organic Chemistry, Prague Institute of Chemical Technology, 166 28 Prague 6

Received June 17th, 1982

Quaternary salts of pyridine and 4-methylpyridine with ethyl esters of ω -bromoalkanoic acids, IIa-IIe, were converted into esters IIIa-IIIe by the action of sodium borohydride. These were further reduced by lithium aluminium hydride to alcohols Ia-Ie. 4-(1,2,3,6-Tetrahydro-1-pyridyl)-butanol (Ic) was also obtained from 1-(3-ethoxycarbonylpropyl)pyridinium bromide (IIc) by the action of LiAlH₄. The ethyl ester IIIa was converted into amide IV.

As part of our studies on the syntheses of 1,2,3,6-tetrahydropyridine derivatives, we have dealt with the preparation of ω -(1,2,3,6-tetrahydro-1-pyridyl)-1-alkanols (Ia-Ie). A rewarding procedure proved to be a two-step reduction of the quaternary salts formed by reaction of pyridine bases with ethyl esters of ω -bromoalkanoic acids, IIa-IIe (ref.¹). In the first step the pyridinium ring was reduced with sodium borohydride to the 1,2,3,6-tetrahydropyridine esters III; the second step was reduction of the ester group with lithium aluminium hydride, leading to the primary alcohols Ia-Ie. The yields of the first reduction step were best at a ratio of the quaternary salts to sodium borohydride = 1 : 3, and rose with increasing length of the aliphatic chain.

Having experience with the reduction of alkylpyridinium halides by the action of lithium aluminium hydride² we have now attempted a similar reduction of the quaternary salt *IId*. The yield of the desired alcohol *Id* was low. Exposure of ethyl

In formulae I-III: a n = 1, b n = 2, c n = 3, d n = 4, e n = 1; a - d R = H, $e R = CH_3$.

Collection Czechoslovak Chem. Commun. [Vol. 48] [1983]

Part LVI in the series Studies in the Pyridine Series; Part LV: This Journal 46, 3285 (1981)

1436

(1,2,3,4-tetrahydro-1-pyridyl)acetate (IIIa) to aqueous ammonia afforded the corresponding amide IV.

The esters IIIa - IIIe and alcohols Ia - Ie were identified by means of their ¹H NMR spectra (Tables II and III).

EXPERIMENTAL

The temperature data are not corrected. The ¹H NMR spectra of solutions in deuteriochloroform were measured at 35°C, employing an apparatus Varian XL-100-15 (100-1 MHz) and tetramethylsilane as internal standard. The mass spectrum was measured with an apparatus Gas Chromatograph-Mass Spectrometer, Type 9000 LKB, Produkter AB Stockholm. The sample was applied by direct inlet. Gas chromatography was carried out in an apparatus Chrom II (length of column

und	Calculated/Fo		Formula	-	Compound Yield, %	Compound
 % N	% Н	% C	d, % B.p., °C/kPa (mol.mass)			
11∙01 10∙96	10·30 10·34	66.11 65.85	C ₇ H ₁₃ NO (127·2)	116/2-1	<i>la</i> 51	
9∙92 9∙77	10·71 10·65	68·04 68·21	C ₈ H ₁₅ NO (141·2)	124/2.7	<i>Ib</i> 50	
9·02 9·13	11·04 11·04	69·63 69·79	C ₉ H ₁₇ NO (155·3)	131/2-1	1c 49	
8·27 8·52	11·31 11·21	70∙96 70∙96	C ₁₀ H ₁₉ NO (169·3)	145/2-1	Id 52	
9·92 10·10	10·70 10·70	68∙05 67∙76	C ₈ H ₁₅ NO (141·2)	110/1·7	<i>Ie</i> 68	
8·28 8·12	8·93 9·12	63·88 63·91	C ₉ H ₁₅ NO ₂ (169·2)	128/3-7	111a 35	
7·64 7·61	9·35 9·39	65∙54 65∙35	C ₁₀ H ₁₇ NO ₂ (183·2)	120/3-3	111b 18	
7·10 7·16	9·71 9·81	66·98 66·92	C ₁₁ H ₁₉ NO ₂ (197·3)	124/2-7	111c 45	
6·63 6·76	10·02 10·03	68·22 68·19	C ₁₂ H ₂₁ NO ₂ (211·3)	141/2·8	111d 50	
7∙64 7∙79	9·35 9·46	65·54 65·49	$C_{10}H_{17}NO_2$ (183·2)	128/3-2	111e 45	

TABLE I Alcohols I and esters III

	Series

H-3

 $H-6^d$

(CH₂)_{n - 2}

FABLE II NMR spectra of esters III						
Proton ^a	IIIa	111b	IIIc	IIId	IIIe	
сн,соо	_	2·34 ^b	2·04 ^c	2.08 ^c		
CH ₂ COO N—CH ₂	3.28	1			3.28	
-	s, 2 H				s, 2 H	
H-2	2.70	2.84			2.50 - 2.	
	t, 2 H, J = 6 Hz				m, 2 H	

 $2 \cdot 04 - 2 \cdot 32$

m, 2 H

 $2 \cdot 92 - 3 \cdot 04$

2.60

2.90 - 3.04

1.72-1.98

m. 2 H

2.62

2.90 - 3.04

1.44-1.80

m. 4 H

^a For IIIa-IIIe 1.24 (t, 3 H, J = 7 Hz) and 4.12 ± 0.04 (q, 2 H, J = 7 Hz) OCH₂CH₃; for IIIa-IIId 5:46-5:88 (m, 2 H) CH=CH; for IIIe 5:22-5:48 (m, 1 H) CH=C-; 1:64 (s, 3 H) CH₃-C.^b m, 6 H; ^c m, 8H; ^d always m, 2 H.

TABLE III ¹H NMR spectra of ω -(1,2,3,6-tetrahydro-1-pyridyl)-1-alkanols (I)

2.04 - 2.32

m, 2 H

3.06-3.20

H-6	H-2, N-−CH ₂	Н-3	(CH ₂) _{n - 2}	CH ₂ O	O—H ^a
2·96−3·08	2·50−2·70	2·06−2·28	_	3.63 ^b	3·34
m, 2 H	m, 4 H	m, 2 H		t, 2 H	bs, 1 H
2·96−3·08	2·50−2·76	2·06−2·28	1.58−1.88	3·78 ^b	5.00
m, 2 H	m, 4 H	m, 2 H	m, 2 H	t, 2 H	bs,1 H
2·96—3·08	2·38−2·68	2·08-2·32	1·56—1·88	3·48 – 3·72	5·02
m, 2 H	m, 4 H	m, 2 H	m, 4 H	m, 2 H	bs, 1 H
$\frac{2 \cdot 82 - 3 \cdot 08}{\text{m, 3 H}^c}$			1·56−1·88 m, 4 H	3·58 ^b t, 2 H	2.82-3.08
2·80−3·06	2·50−2·72	1·98—2·24		3·64 ^b	3·16
m, 2 H	m, 4 H	m, 2 H		t, 2 H	bs,1 H
	$2 \cdot 96 - 3 \cdot 08$ m, 2 H $2 \cdot 96 - 3 \cdot 08$ m, 2 H $2 \cdot 96 - 3 \cdot 08$ m, 2 H $2 \cdot 82 - 3 \cdot 08$ m, 3 H ^c $2 \cdot 80 - 3 \cdot 06$	$\begin{array}{c ccccc} H-6 & N-CH_2 \\ \hline \\ 2\cdot96-3\cdot08 & 2\cdot50-2\cdot70 \\ m, 2 H & m, 4 H \\ 2\cdot96-3\cdot08 & 2\cdot50-2\cdot76 \\ m, 2 H & m, 4 H \\ 2\cdot96-3\cdot08 & 2\cdot38-2\cdot68 \\ m, 2 H & m, 4 H \\ 2\cdot82-3\cdot08 & 2\cdot04- \\ m, 3 H^c & m, \\ 2\cdot80-3\cdot06 & 2\cdot50-2\cdot72 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H-6 NCH ₂ H-3 $(CH_2)_{n-2}$ CH_2O 2·96-3·08 2·50-2·70 2·06-2·28 - 3·63 ^b m, 2 H m, 4 H m, 2 H t, 2 H 2·96-3·08 2·50-2·76 2·06-2·28 1·58-1·88 3·78 ^b m, 2 H m, 4 H m, 2 H t, 2 H 2·96-3·08 2·30-2·76 2·08-2·32 1·56-1·88 3·48-3·72 m, 2 H m, 4 H m, 2 H m, 4 H m, 2 H 2·96-3·08 2·04

^a Shifted with increasing temperature; ^b J = 6 Hz; ^c together with OH, separated signals at elevated temperature; ^d for *le* 1.66 (s, 3 H) CH₃-C₍₄₎; 5.22-5.48 (m, 1 H), CH=C; for compounds Ia-Id 5.48-5.90 (m, 2 H) CH=CH.

Collection Czechoslovak Chem. Commun. [Vol. 48] [1983]

1.92 - 2.22

m, 2 H

2.90-3.14

170 cm, 1.D. 0.6 cm, nitrogen as carrier, the stationary phase silicone clastomer 15% E-301 on Chromosorb N-AW-DMCS, or 15% Carbowax 20M on Chromaton N-AW-HMDS, detection by FID). Thin-layer chromatography ran on Silufol plates UV 254 (wide pore silica gel Silpearl with a luminiscent indicator for UV light 254 nm on an aluminium foil, with starch as binder); the spots were detected using a Universal UV Lamp Camag (Muttenz, Schweiz) and iodine vapour in the system benzene-ethanol 9:1.

The quaternary salts Ha - Hc were prepared by a described procedure¹; the salts Hd - He were obtained analogously. These strongly hygroscopic compounds were collected on a filter under nitrogen, washed with benzene, dried *in vacuo* at room temperature, and used without having been analysed.

Ethyl (1,2,3,6-tetrahydro-1-pyridyl)acetate (IIIa)

To a solution of N-(ethoxycarbonylmethyl)pyridinium bromide¹ (49·2 g, 0·02 mol) in ethanol (440 ml) were added small portions of NaBH₄ (a total of 22·7 g, 0·60 mol) under stirring and cooling. The stirring was continued for 1·5 h at room temperature. The ethanol was then removed *in vacuo*, the residue was dissolved in water (100 ml), saturated with Na₂CO₃, extracted into four 30 ml portions of ether and dried with MgSO₄. The ether was distilled off and the residue was twice distilled *in vacuo*; yield 11·9 g (35%) of *HIa*, b.p. 128°C/3·8 kPa (28 Torr).

2-(1,2,3,6-Tetrahydro-1-pyridyl)ethanol (Ia)

To a suspension of LiAlH₄ (1:37 g, 0:036 mol) in ether (120 ml) was added dropwise the ester *IIIa* (3:0 g, 0:018 mol) in ether (20 ml). The mixture was boiled for 3 h under a reflux condenser, cooled down and decomposed with 4% NaOH (6 ml). After stirring for 15 min the precipitate of the hydroxides was collected on a filter and washed with ether (100 ml). The combined filtrates were dried with K_2CO_3 . The ether was distilled off, the residue was distilled *in vacuo* and redistilled; yield 1:15 g (51%) of a liquid, b.p. 116°C/2·1 kPa (16 Torr), a single compound by GLC and TLC. The esters *IIIb* – *IIIe* and the alcohols *Ib*–*Ie* were obtained by procedures analogous to those used for the preparation of *IIIa* and *Ia*, respectively.

4-(1,2,3,6-Tetrahydro-I-pyridyl)butanol (Ic)

To a stirred suspension of LiAlH₄ (1:52 g, 0.04 mol) in ether (130 ml) was added dropwise *IIc* (5.48 g, 0.02 mol) in dichloromethane (30 ml). The mixture was boiled under a reflux condenser for 6 h, cooled down and decomposed (ref.³). After stirring for 15 min the precipitate was collected on a filter and washed with ether (100 ml). The combined filtrates were dried with K₂CO₃. The ether and dichloromethane were distilled off, the product was distilled *in vacuo* and redistilled; yield 0.50 g (16%) of a liquid, b.p. 126°C/1.9 kPa (14 Torr). TLC, GLC and the NMR spectra identified it as the alcohol *Ic*.

(1,2,3,6-Tetrahydro-1-pyridyl)acetamide (IV)

A mixture of *IIIa* (1.0 g, 0.006 mol) and 26% aqueous ammonia (10 ml) was stirred for 8 h. The separated flakes were collected on a filter and crystallized from a mixture cyclohexane-ethanol 20:1; yield 0.55 g (66%), m.p. 124-125°C. For $C_7H_{12}N_2O$ (140.2) calculated: 59-98% C, 8.63% H, 19-98% N; found: 59-83% C, 8.58% H, 19-98% N. ¹H NMR spectrum: 2-04-2:30 (m, 2 H) for $C_{(3)}$; 2-64 (t, J = 6 Hz, 2H) H for $C_{(2)}$; 2:86–3:18 (m, 2 H) H for $C_{(6)}$ and NCH₂CONH₂; 5:00–5:88 (m, 2 H) CH=CH; 6:44 and 7-10 (2 × bs, 2 H) CONH₂. Mass

Pyridinc Series

spectrum: (m/z, % rel. intensity): 141 (M⁺, 5%); 97 (M⁺ - CONH₂, 100°₆); 83 (M⁺ - CH₂CONH₂, 60%).

The elemental analyses were performed at the Analytical Department of the Institute (head Dr L. Helešic), the NMR spectra were measured under the direction of Dr P. Trška, the mass spectrum was measured by Dr J. Novák.

REFERENCES

- 1. Lukeš R., Pliml J.: This Journal 21, 1602 (1956).
- 2. Ferles M.: This Journal 24, 2221 (1959).
- 3. Mićović V. M., Mihailović M. L.: J. Org. Chem. 18, 1190 (1953).

Translated by J. Salák.